slider

Umělá inteligence porazila pokerové profesionály

03.03.2017

Na vývoji počítačového programu, který obehrál profesionální hráče v pokeru, se podíleli odborníci z Matematicko-fyzikální fakulty Univerzity Karlovy a Fakulty elektrotechnické ČVUT v Praze.

Vědci z Univerzity Karlovy, Českého vysokého učení technického v Praze a Albertské univerzity v Kanadě dosáhli zásadního úspěchu na poli umělé inteligence. Mezinárodní tým vyvinul počítačový program DeepStack, který v prosinci 2016 poprvé v historii porazil profesionální hráče v jedné z nejpopulárnějších karetních her na světě – dvouhráčovém no-limit Texas hold´em pokeru. Vědecké objevy, které vedly k tomto výsledku, publikuje Science, jeden z nejprestižnějších vědeckých časopisů.

DeepStack vytvořil další historický milník, kdy lidé v populárních hrách podlehli počítačům. Po backgammonu, dámě, šachu a go je tedy dalším v pořadí no-limit poker. Oproti předchozím hrám je tu však jeden zásadní rozdíl. „Poker byl dlouholetou výzvou pro umělou inteligenci,“ říká Michael Bowling, profesor z Albertské univerzity, který výzkumný tým vedl. „Je to typická hra s neúplnou informací, ve které hráči během hry nemají stejnou informaci a pohled na hru.“

Fakt, že hráč nevidí karty oponenta a oponent nevidí jeho karty, dělá problém výrazně složitějším z teoretického hlediska. Na druhou stranu je však tato neurčitost informace v reálném světě běžná. Matematické modely her umožňují popsat situace z ekonomie, aukcí, síťové bezpečnosti, ochrany důležitých cílů nebo kontroly jízdného. „V těchto reálných situacích se jednotlivé strany jen velmi zřídka rozhodují na základě úplných a totožných informací. Proto je pokrok v řešení her s neúplnou informací zásadní pro praktické aplikace,“ vysvětluje Michael Bowling.

První dva autoři DeepStacku, Martin Schmid a Matej Moravčík z Katedry aplikované matematiky Matematicko-fyzikální fakulty UK, popisují začátky projektu: „Jak už to tak v pokeru bývá, velkou roli sehrála náhoda. Při přátelském rozhovoru s profesorem Bowlingem na konferenci v Montrealu slovo dalo slovo a na stole bylo pozvání odjet na rok do Kanady a stát se členy Mikova týmu s odvážným cílem, který se nakonec více než povedl.“ Náročnost projektu podtrhuje také fakt, že desetičlenný tým pracoval na projektu téměř rok. „Celý Mikův tým je plný skvělých a šikovných lidí, těšíme se na další projekty v rámci tohoto týmu,“ shrnuli Martin a Matej.

Další z českých vědců, Viliam Lisý z Centra umělé inteligence na katedře počítačů Fakulty elektrotechnické ČVUT, v té době na Albertské univerzitě již působil v rámci své post-doktorské stáže: „Albertská univerzita má jednu z nejvlivnějších výzkumných skupin v oblasti výpočetní teorie her. Když mi Michael Bowling po doktorátu v této oblasti nabídl možnost absolvovat u něj post-doktorskou stáž, rozhodování bylo jednoduché.“

„Algoritmus DeepStacku je přelomový, protože se nám podařilo přenést myšlenky, které byly klíčové v hrách s úplnou informací, do světa her s neúplnou informaci. Doposud nebylo jasné, zda je podobný přístup vůbec možný,“ říká Schmid. DeepStack umožňuje vypočítat vhodnou strategii pro situaci v pokeru až v momentě, kdy situace nastane, tedy bez nutnosti uvažovat o úplně celé hře předem naráz, což byl doteď převládající přístup.

Tato zásadní změna principů řešení byla umožněna mimo jiné rozvojem strojového učení pomocí hlubokých neuronových sítí. Tato neuronová síť v případě DeepStacku vyhodnocuje jednotlivé pokerové situace, a jde tedy o jistou formu intuice, kterou algoritmus využívá pro správná rozhodnutí. „Podobně jako v případě člověka, musí i DeepStack svoji intuici trénovat hraním mnoha pokerových partií. Naše síť v průběhu učení viděla miliony pokerových situací,“ dodává Moravčík.

 

„Schopnost uvažovat o jednotlivých pokerových situacích až v momentě když nastanou je klíčová pro složité hry, jako je no-limit Texas Hold’em, ve kterých může nastat mnohem víc různých situací, než je počet atomů ve vesmíru,“ vysvětluje Lisý. I takto složitou hru hraje DeepStack rychleji než lidi. V průměru potřebuje jen tři sekundy „myšlení“ na každé rozhodnutí a funguje i na běžném laptopu s výkonnější grafickou kartou od Nvidie, kterou používá pro své výpočty.

DeepStack hrál proti skupině profesionálních hráčů pokeru v prosinci 2016. Třicet tři hráčů vybraných Mezinárodní federací pokeru pocházelo ze sedmnácti států. Každý hráč měl možnost hrát 3000 her během čtyř týdnů. DeepStack tyto hráče v průměru porazil s obrovskou převahou. Každého z jedenácti hráčů, kteří dohráli všech 3000 her, porazil i individuálně a pouze v jednom případě výhra nebyla statisticky signifikantní. DeepStack je tedy první počítačový program, který porazil profesionální hráče v dvouhráčovém no-limit Texas hold’em pokeru.

Profesor Michael Bowling přiletí na zvanou přednášku do Prahy koncem března. Detaily návštěvy budou zveřejněny s předstihem.

-LiM

 

 

Související články

Polypropylenové vlákno umožňující 3D tisk při vysoké úrovni tepelné a chemické odolnosti

Verbatim, představil svůj nejnovější 3D materiál – polypropylen – který je vysoce odolný vůči chemikáliím, teplu i únavě materiálu, a stejně tak má dobré...

Nokia a Facebook zlomily rekord v rychlosti přenosu dat podmořským optickým kabelem

Nokia a Facebook úspěšně dokončily několik testů 5500 kilometrů dlouhého podmořského kabelu mezi New Yorkem a Irskem. Nová technologie Nokia Bell Labs s názvem Probalistic Constellation Shaping (PCS)...

Vědci na FEL ČVUT vyvíjejí novou technologii Mobile Edge Computing

Laboratoř 5Gmobile, působící při katedře telekomunikační techniky Fakulty elektrotechnické ČVUT v Praze, se dlouhodobě zabývá se vývojem budoucích mobilních sítí (5G a...

Nová mobilní aplikace na plánování výletů využívá vesmírné technologie 

Rozvíjející se turismus nutí vývojáře aplikací přicházet s novinkami i v oblasti cestovního ruchu. Nová česká...

kalendář akcí
GameDev Area Czech s.r.o.

GAME ACCESS 2017

4.5.2017 - 6.5.2017
ABF

FOR INDUSTRY 2017

9.5.2017 - 12.5.2017
ABF

FOR INFOSYS 2017

9.5.2017 - 12.5.2017
Gopas

Teched-Devcon

15.5.2017 - 18.5.2017
Autocont

IT pro Byznys 2017

23.5.2017
TATE

Information Security Summit

24.5.2017 - 25.5.2017
Esuba

Game4Good

27.5.2017 - 28.5.2017
Acomware

Performance 2020

6.6.2017
IQRF Alliance

IQRF Summit 2017

7.6.2017 - 8.6.2017
MotivP

Firemní kultura

8.6.2017
banner